GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS ARISING FROM LATTICES

Joshua M Siktar (jsiktar@andrew.cmu.edu)
Williams College [Mentor: Steven Miller]

Abstract of Report Talk: Zeckendorf’s Theorem states that any positive integer can be written uniquely as a sum of non-adjacent Fibonacci numbers; interestingly, one can also define the Fibonacci numbers as the unique sequence for which every positive integer has a unique decomposition as the sum of non-adjacent terms. Much is known about the Zeckendorf decomposition; for example, as \(n \to \infty \) the distribution of the number of summands of integers in \([F_n, F_{n+1})\) converges to a Gaussian, and for each \(m \in [F_n, F_{n+1}) \) almost surely the distribution of gaps between summands converges to a geometric random variable with parameter \(1/\phi \) (where \(\phi \) is the Golden Mean).

We consider a two-dimensional lattice analogue, where a legal decomposition of a number \(n \) is a collection of lattice points such that each point is included at most once, once a point is chosen all future points must have smaller \(x \) and smaller \(y \) coordinates, and the sum of the values of the points chosen equals \(n \). We prove that the distribution of the number of summands in these lattice decompositions converges to a Gaussian distribution. If time permits we will discuss the distribution of the gaps and further generalizations to arbitrary \(d \) (once \(d > 2 \) we no longer have a closed form expression for the number of legal paths of length \(k \) starting at the point \((n, n, \ldots, n)\) on the lattice, and must resort to a delicate asymptotic analysis and generating functions).

Received: July 18, 2018